Сложение дробей 7/12 + 1/60
Задача: сложить дроби
7 12
и
1 60
.
Решение:
7 12
+
1 60
=
7 ∙ 5 60
+
1 ∙ 1 60
=
35 60
+
1 60
=
35 + 1 60
=
36 60
=
3 5
Ответ:
7 12
+
1 60
=
3 5
.
Подробное объяснение:
- Найдём наименьший общий знаменатель (НОЗ):
- Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
- Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
- Складываем числители:
- Сократим дробь:
- Смотрите также
- Калькуляторы
- Последние примеры
-
13 36плюс11 36- решение с ответом
- Сколько будет
12 15прибавить3 2
-
5 18прибавить7 32- решение с ответом
-
1 15прибавить1 25- решение с ответом
-
13 24+41 45равно?
-
3 5+3 11- решение с ответом
- Выполните сложение дробей 395 9и41 6
-
3 10прибавить2 12- решение с ответом
- Выполните сложение -1 9и6 3
Сложение дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему сложению числителей. Для этого:
НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 12 и на 60. Это — 60.
60 : 12 = 5
60 : 60 = 1
7 ∙ 5 60
+
1 ∙ 1 60
=
35 60
+
1 60
35 + 1 60
=
36 60
В результате сложения получилась дробь
36 60
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 36, и на 60. В нашем случае это — 12. Разделим числитель и знаменатель на 12 и получим:
Таким образом:
7 12
+
1 60
=
3 5
Смотрите также:
Полезные материалы
Онлайн калькуляторы
Последние примеры на сложение дробей
Калькулятор сложения дробей
Подписаться
авторизуйтесь
0 комментариев