Сократите дробь 73/10

Задача: сократить дробь
73 10
Решение:
73 10
=
73 : 1 10 : 1
=
73 10
=
7
3 10
Ответ:
73 10
=
7
3 10

Подробное объяснение:

  1. Найдём наибольший общий делитель (НОД)
  2. НОД — это наибольшее число, на которое 73 и 10 делятся без остатка.

    Для нахождения НОД (73;10) необходимо:

    • разложить 73 и 10 на простые множители;
    • взять те множители, которые входят в разложение каждого из чисел;
    • вычислить их произведение.

    Отсюда:

    73 = 73;

    73 73
    1

    10 = 2 · 5;

    10 2
    5 5
    1
    НОД (73; 10) = 1 (Частный случай, т.к. 73 и 10 — взаимно простые числа).

  3. Разделим числитель и знаменатель на НОД
  4. 73 : 1 10 : 1
    =
    73 10

  5. Переведем неправильную дробь в смешанную:
  6. 73 10
    — неправильная, т.к. числитель 73 больше знаменателя 10.
    Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Результат деления — будет целой частью, остаток от деления — числителем, знаменатель — остается прежним. В нашем случае это:
    73 10
    =
    7
    3 10
Таким образом:
73 10
=
7
3 10

Смотрите также:

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии