Сравнение дробей 2/11 и 4/4
Задача: Сравнить дроби
2 11
и
4 4
Решение:
2 11
?
4 4
=
2 ∙ 4 44
?
4 ∙ 11 44
=
8 44
?
44 44
;
8 44
<
44 44
=
2 11
<
4 4
Ответ:
2 11
<
4 4
Подробное объяснение:
- Приведем дроби к общему знаменателю (найдем НОЗ):
- Найдем дополнительные множители для каждой дроби. Для этого НОЗ делим на каждый знаменатель:
- Сравним числители:
НОЗ — это наименьшее число которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число которое делится и на 11 и на 4. Это — 44.
44 : 11 = 4
44 : 4 = 11
Полученные множители перемножаем с числителями:
2 11
?
4 4
=
2 ∙ 4 44
?
4 ∙ 11 44
=
8 44
?
44 44
Сравнение двух дробей с одинаковыми знаменателями сводится к сравнению их числителей. В нашем случае 8 < 44, соответственно:
8 44
<
44 44
отсюда:
2 11
<
4 4
Смотрите также:
- Смотрите также
- Калькуляторы
- Последние примеры
Полезные материалы
Онлайн калькуляторы
Последние примеры на сравнение дробей
- Сравнение дробей
23 24и15 16
- Сравнение двух дробей -7 9и-2 27
- Сравнить дроби
3 10и3 15
- Выполните сравнение дробей 39 10и4 5
- Какая дробь больше
10 7или3 10
- Что больше 99 19или10 19?
- Выполните сравнение дробей 15 7и15 8
- Какая дробь больше
24 37или24 25
- Какая дробь больше
10 63или26 161