Сравнение дробей 34(24/25) и 34(25/26)

Задача: Сравнить дроби
34
24 25
и
34
25 26
Решение:
34
24 25
?
34
25 26
=
34 ∙ 25 + 24 25
?
34 ∙ 26 + 25 26
=
874 25
?
909 26
=
874 ∙ 26 650
?
909 ∙ 25 650
=
22724 650
?
22725 650
;
22724 650
<
22725 650
=
34
24 25
<
34
25 26
Ответ:
34
24 25
<
34
25 26

Подробное объяснение:

  1. Приведём смешанные дроби к неправильному виду:
  2. 34
    24 25
    — смешанная дробь.

    Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:

    34
    24 25
    =
    34 ∙ 25 + 24 25
    =
    874 25
    34
    25 26
    — смешанная дробь.

    Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:

    34
    25 26
    =
    34 ∙ 26 + 25 26
    =
    909 26
  3. Приведем дроби к общему знаменателю (найдем НОЗ):
  4. НОЗ — это наименьшее число которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число которое делится и на 25 и на 26. Это — 650.

  5. Найдем дополнительные множители для каждой дроби. Для этого НОЗ делим на каждый знаменатель:
  6. 650 : 25 = 26

    650 : 26 = 25

    Полученные множители перемножаем с числителями:

    874 25
    ?
    909 26
    =
    874 ∙ 26 650
    ?
    909 ∙ 25 650
    =
    22724 650
    ?
    22725 650

  7. Сравним числители:
  8. Сравнение двух дробей с одинаковыми знаменателями сводится к сравнению их числителей. В нашем случае 22724 < 22725, соответственно:

    22724 650
    <
    22725 650

    отсюда:

34
24 25
<
34
25 26

Смотрите также:

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии