1(2/13) умножить на 1(1/15)
Задача: найти произведение дробей
1
2 13
и
1
1 15
.
Решение:
1
2 13
×
1
1 15
=
1 ∙ 13 + 2 13
×
1 ∙ 15 + 1 15
=
15 13
×
16 15
=
15 ∙ 16 13 ∙ 15
=
240 195
=
16 13
=
1
3 13
Ответ:
1
2 13
×
1
1 15
=
1
3 13
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Перемножаем числители и знаменатели:
- Сократим дробь:
- Переведем неправильную дробь в смешанную:
Умножение смешанных дробей сводится в их преобразовании к неправильному виду и дальнейшему перемножению числителей и знаменателей.
1
2 13
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
1
2 13
=
1 ∙ 13 + 2 13
=
15 13
1
1 15
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
1
1 15
=
1 ∙ 15 + 1 15
=
16 15
15 ∙ 16 13 ∙ 15
=
240 195
В результате умножения получилась дробь
240 195
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 240, и 195. В нашем случае это — 15. Разделим числитель и знаменатель на 15 и получим:
240 : 15 195 : 15
=
16 13
Подробнее о сокращении дробей, смотрите тут.
16 13
— неправильная, т.к. числитель 16 больше знаменателя 13.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
16 13
=
1
3 13
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
1
2 13
×
1
1 15
=
1
3 13