4(1/2) умножить на 7(2/3)
Задача: найти произведение дробей
4
1 2
и
7
2 3
.
Решение:
4
1 2
×
7
2 3
=
4 ∙ 2 + 1 2
×
7 ∙ 3 + 2 3
=
9 2
×
23 3
=
9 ∙ 23 2 ∙ 3
=
207 6
=
69 2
=
34
1 2
Ответ:
4
1 2
×
7
2 3
=
34
1 2
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Перемножаем числители и знаменатели:
- Сократим дробь:
- Переведем неправильную дробь в смешанную:
Умножение смешанных дробей сводится в их преобразовании к неправильному виду и дальнейшему перемножению числителей и знаменателей.
4
1 2
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
4
1 2
=
4 ∙ 2 + 1 2
=
9 2
7
2 3
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
7
2 3
=
7 ∙ 3 + 2 3
=
23 3
9 ∙ 23 2 ∙ 3
=
207 6
В результате умножения получилась дробь
207 6
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 207, и 6. В нашем случае это — 3. Разделим числитель и знаменатель на 3 и получим:
207 : 3 6 : 3
=
69 2
Подробнее о сокращении дробей, смотрите тут.
69 2
— неправильная, т.к. числитель 69 больше знаменателя 2.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
69 2
=
34
1 2
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
4
1 2
×
7
2 3
=
34
1 2