Вычитание дробей 10(1/5) — 9/15
Задача: вычислите
10
1 5
минус
9 15
.
Решение:
10
1 5
—
9 15
=
10 ∙ 5 + 1 5
—
9 15
=
51 5
—
9 15
=
51 ∙ 3 15
—
9 ∙ 1 15
=
153 15
—
9 15
=
153 — 9 15
=
144 15
=
48 5
=
9
3 5
Ответ:
10
1 5
—
9 15
=
9
3 5
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Найдём наименьший общий знаменатель (НОЗ):
- Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
- Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
- Вычитаем числители:
- Сократим дробь:
- Переведем неправильную дробь в смешанную:
Вычитание дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему вычитанию числителей. Для этого:
10
1 5
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
10
1 5
=
10 ∙ 5 + 1 5
=
51 5
9 15
— обыкновенная дробь.
НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 5, и на 15. Это — 15.
15 : 5 = 3
15 : 15 = 1
51 5
—
9 15
=
51 ∙ 3 15
—
9 ∙ 1 15
=
153 15
—
9 15
153 — 9 15
=
144 15
В результате вычитания получилась дробь
144 15
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 144, и на 15. В нашем случае это — 3. Разделим числитель и знаменатель на 3 и получим:
144 : 3 15 : 3
=
48 5
Подробнее о сокращении дробей, смотрите тут.
48 5
— неправильная, т.к. 48 больше 5.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
Таким образом:
10
1 5
—
9 15
=
9
3 5
Смотрите также:
Полезные материалы
Онлайн калькуляторы
Последние примеры на вычитание дробей
Калькулятор вычитания дробей
Подписаться
авторизуйтесь
0 комментариев