Деление дробей 1(58/91) ÷ 1/26
Задача: разделить дробь
1
58 91
на
1 26
.
Решение:
1
58 91
÷
1 26
=
1 ∙ 91 + 58 91
÷
1 26
=
149 91
÷
1 26
=
149 91
×
26 1
=
149 ∙ 26 91 ∙ 1
=
3874 91
=
298 7
=
42
4 7
Ответ:
1
58 91
÷
1 26
=
42
4 7
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Переворачиваем вторую дробь:
- Перемножаем числители и знаменатели:
- Сократим дробь:
- Переведем неправильную дробь в смешанную:
Деление смешанных дробей сводится в их преобразовании к неправильному виду, и умножению первой дроби на перевернутую вторую.
1
58 91
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
1
58 91
=
1 ∙ 91 + 58 91
=
149 91
1 26
— обыкновенная дробь.
149 91
÷
1 26
=
149 91
×
26 1
149 ∙ 26 91 ∙ 1
=
3874 91
В результате деления получилась дробь
3874 91
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 3874, и 91. В нашем случае это — 13. Разделим числитель и знаменатель на 13 и получим:
3874 : 13 91 : 13
=
298 7
Подробнее о сокращении дробей, смотрите здесь.
298 7
— неправильная, т.к. числитель 298 больше знаменателя 7.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
298 7
=
42
4 7
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
1
58 91
÷
1 26
=
42
4 7