Сравнение дробей 4/5 и 4/8
Задача: Сравнить дроби
4 5
и
4 8
Решение:
4 5
?
4 8
=
4 ∙ 8 40
?
4 ∙ 5 40
=
32 40
?
20 40
;
32 40
>
20 40
=
4 5
>
4 8
Ответ:
4 5
>
4 8
Подробное объяснение:
- Приведем дроби к общему знаменателю (найдем НОЗ):
- Найдем дополнительные множители для каждой дроби. Для этого НОЗ делим на каждый знаменатель:
- Сравним числители:
НОЗ — это наименьшее число которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число которое делится и на 5 и на 8. Это — 40.
40 : 5 = 8
40 : 8 = 5
Полученные множители перемножаем с числителями:
4 5
?
4 8
=
4 ∙ 8 40
?
4 ∙ 5 40
=
32 40
?
20 40
Сравнение двух дробей с одинаковыми знаменателями сводится к сравнению их числителей. В нашем случае 32 > 20, соответственно:
32 40
>
20 40
отсюда:
4 5
>
4 8