Сравнение дробей 7/8 и 7/15
Задача: Сравнить дроби
7 8
и
7 15
Решение:
7 8
?
7 15
=
7 ∙ 15 120
?
7 ∙ 8 120
=
105 120
?
56 120
;
105 120
>
56 120
=
7 8
>
7 15
Ответ:
7 8
>
7 15
Подробное объяснение:
- Приведем дроби к общему знаменателю (найдем НОЗ):
- Найдем дополнительные множители для каждой дроби. Для этого НОЗ делим на каждый знаменатель:
- Сравним числители:
НОЗ — это наименьшее число которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число которое делится и на 8 и на 15. Это — 120.
120 : 8 = 15
120 : 15 = 8
Полученные множители перемножаем с числителями:
7 8
?
7 15
=
7 ∙ 15 120
?
7 ∙ 8 120
=
105 120
?
56 120
Сравнение двух дробей с одинаковыми знаменателями сводится к сравнению их числителей. В нашем случае 105 > 56, соответственно:
105 120
>
56 120
отсюда:
7 8
>
7 15