Сократите дробь 1(22/78)
Задача: сократить дробь
1
22 78
Решение:
1
22 78
=
1 ∙ 78 + 22 78
=
100 78
=
100 : 2 78 : 2
=
50 39
=
1
11 39
Ответ:
1
22 78
=
1
11 39
Подробное объяснение:
- Переведем смешанную дробь в неправильную:
- Найдём наибольший общий делитель (НОД)
- разложить 100 и 78 на простые множители;
- взять те множители, которые входят в разложение каждого из чисел;
- вычислить их произведение.
- Разделим числитель и знаменатель на НОД
- Переведем неправильную дробь в смешанную:
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
1
22 78
=
1 ∙ 78 + 22 78
=
100 78
НОД — это наибольшее число, на которое 100 и 78 делятся без остатка.
Для нахождения НОД (100;78) необходимо:
Отсюда:
100 = 2 · 2 · 5 · 5;
100 | 2 |
50 | 2 |
25 | 5 |
5 | 5 |
1 |
78 = 2 · 3 · 13;
78 | 2 |
39 | 3 |
13 | 13 |
1 |
НОД (100; 78) = 2 = 2.
100 : 2 78 : 2
=
50 39
50 39
— неправильная, т.к. числитель 50 больше знаменателя 39.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Результат деления — будет целой частью, остаток от деления — числителем, знаменатель — остается прежним. В нашем случае это:
50 39
=
1
11 39
Таким образом:
1
22 78
=
1
11 39